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Abstract
We consider Lévy flights of stability index α ∈ (0, 2) in a potential landscape in
the limit of a small noise parameter. We give a purely probabilistic description
of the random dynamics on the basis of a special decomposition of the driving
Lévy processes into independent small jumps and compound Poisson parts.
We prove that escape times from a potential well are exponentially distributed
and their mean values increase as a power ε−α of the noise intensity ε. This
allows us to obtain meta-stability results for a jump diffusion in a double-well
potential.

PACS numbers: 05.40.Fb, 02.50.Ey, 02.50.Fz, 02.50.Ga

1. Introduction

Dynamical systems subject to small random perturbations receive much attention in both
the physical and mathematical literature. Most of the interesting questions relate to the
problem of the first exit from a domain and the corresponding problem of transitions between
domains of attraction of the underlying deterministic dynamical system and meta-stability.
The properties of the random system are mainly determined by the nature of the noise. The
study of perturbations by white Gaussian noise has the longest history (see, e.g., [1, 2]), and
richest bibliography. The standard mathematical reference on this subject is the book [3].

Recently, non-Gaussian, in particular, Lévy noises with heavy tails—Lévy flights (LFs)—
have been introduced in many systems of sciences and economics. They are observed, for
instance, in Greenland ice core measurements (see [4]), and thus used to model important
qualitative features of paleoclimatic processes through low-dimensional dynamical systems.
In biology, Lévy flights are observed, for example, in the behavioural patterns of certain
species such as albatrosses [5] or anchovies [6]. They are used to account for the uncertainties
in price fluctuations in dynamical models of financial markets [7]. Lévy flights also naturally
appear in particle evolutions along polymer chains [8, 9].
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In this letter, we give a purely probabilistic description of small-scale Lévy flights in an
external potential, i.e. we investigate equations of motion of overdamped particles perturbed
by small discontinuous noise processes with heavy tails. In the limit of small noise intensity
we derive the exit law from a potential well, the analogue of the Kramers’ law for Gaussian
diffusions, and then obtain some meta-stability results. The rigorous proofs of the results
formulated in this paper can be found in the forthcoming works [10, 11]. In the present paper,
we restrict ourselves to heuristic arguments and refrain from presenting the technical details.

2. Lévy flights

Lévy flight is a synonym for symmetric stable Lévy process. Mathematically, it describes a
random Markov process L = (Lt )t�0 with independent stationary increments and marginals
with symmetric stable laws of index α ∈ (0, 2). The Fourier transform of the marginal
Lt, t � 0, has a very simple form,

E eiλLt = e−c(α)t |λ|α , c(α) = 2
∫ ∞

0

1 − cos y

y1+α
dy. (1)

In the case α = 2 we set c(2) = 1
2 , and (1) becomes the Fourier transform of a standard

Brownian motion. However, because of the divergence c(α) ↑ ∞ as α ↑ 2, Brownian motion
cannot be seen as a weak limit of LFs. The properties of the sample paths of L, in fact, are quite
different for α = 2 and α < 2. Firstly, LFs are discontinuous (pure jump) processes whereas
the Brownian motion has continuous paths. Secondly, Brownian motion has moments of all
orders, whereas E|Lt |γ < ∞ iff γ < α. One can also show that the tails of Lévy flights are
heavy, i.e. P(Lt > u) ∼ u−α , u → ∞, quite the opposite of the exponentially light Gaussian
tails. Further, for α ∈ (0, 1), the path variation of Lévy flights is bounded on finite time
intervals, and unbounded for α ∈ [1, 2).

Even if the form of the Fourier transform (1) is very simple, the marginals’ density p can
be expressed by elementary functions only in two cases, namely for

α = 1, where p(x) = 1

π

1

x2 + 1
, and α = 2, where p(x) = 1√

2π
e−x2/2. (2)

In the first case, L is called the Cauchy process. More generally, for all α ∈ (0, 2), stable
densities and distribution functions are known in terms of higher transcendental Meijer’s
G- and Fox’s H-functions (see [12], chapter 6).

Although LFs are very well understood (see e.g. [13, 14] for a general theory), it is much
more difficult to describe their behaviour in an external potential U (see, e.g., [15, 16]). The
dynamics is then given by a stochastic differential equation

Xε
t = x −

∫ t

0
U ′(Xε

s−
)

ds + εLt , x ∈ R, t � 0, (3)

where the positive parameter ε denotes the noise intensity. A frequently used approach to
this problem consists in investigation of the corresponding Fokker–Planck equation which is
a partial differential equation fractional in the spatial coordinate. This study is a difficult task,
and analytically accessible solutions can be derived only for a few particular potentials and
values of α (see [15, 17, 18]).

We study the process Xε by probabilistic methods in the limit as the scale parameter ε → 0.
Thus, equation (3) becomes a natural generalization of the Smoluchovski approximation of the
Langevin equation for non-Gaussian stable noises. However, because of the heavy-tail nature
of random perturbation, the limiting dynamics of Xε differs drastically from its Gaussian
counterpart.
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Finally, we stress that our approach neither uses special properties of LFs such as the
scaling property, nor involves analysis of the Fokker–Planck equation, and thus can be
generalized to a larger class of driving processes. Firstly, we can add to L a Brownian
component and a constant drift considering a process Lt + aBt + bt, a � 0, b ∈ R. Secondly,
it is enough to require that the heaviest tail of the Lévy measure ν is regularly varying with
some negative index, i.e. E|Lt |γ < ∞ for some positive γ which is not necessarily smaller
than 2.

3. Typical behaviour of LFs in external potentials

In this section, we assume that the potential U has ‘parabolic’ form, i.e. xU ′(x) � 0, U ′(x) = 0
iff x = 0 and U ′′(0) = M > 0. We also impose the regularity condition U(x) = |x|2+c,
x → −∞. Under these assumptions, the deterministic dynamical system,

X0
t = x −

∫ t

0
U ′(X0

s

)
ds, (4)

has a unique asymptotically stable attractor at the origin. Let I = [−b, a] be a bounded or
unbounded interval containing zero, −∞ � −b < 0 < a < ∞.

In this section, we give a pathwise description of LFs in a potential U for small values of
the scale parameter ε.

As a main tool of our analysis, we decompose LFs L into sums of ε-dependent small and
large jump components. This can be done with the help of the Lévy–Khinchin formula for
infinitely divisible distributions (see [14]). Indeed, the Fourier transform (1) can be represented
in a more complicated integral form as follows:

E eiλLt = exp

{
t

∫
R\{0}

[eiλy − 1 − iλy1{|y|�1}(y)]
dy

|y|1+α

}
, (5)

where the indicator function of a Borel set A ⊆ R is given by 1A(y) = 1 if y ∈ A and
1A(y) = 0 otherwise. The most important ingredient of the representation (5) is the so-called
Lévy measure of the random process L given by

ν(A) =
∫

A\{0}

dy

|y|1+α
, A Borel set in R. (6)

The Lévy measure controls the intensity and sizes of the jumps of the process. If we denote
by �Lt = Lt − Lt− the jump size of L at time t, t > 0, and the number of jumps on the time
interval (0, t] belonging to the set A by

N(t, A) = �{s : (s,�Ls) ∈ (0, t] × A}, (7)

it turns out that N(t, A) has a Poisson distribution with mean tν(A) (which can possibly be
infinite). For any α ∈ (0, 2), the Lévy measure of any neighbourhood of 0 is infinite; hence,
LFs make infinitely many very small jumps on any time interval. Moreover, the tails of the
density |y|−1−α determine big jumps of LFs. Thus, big jumps have finite mean for α ∈ (1, 2),
and infinite mean for α ∈ (0, 1].

Let us now decompose the process L into the sum of two independent processes with
relatively small and big jumps. We introduce two new Lévy measures by setting

νε
ξ (A) = ν(A ∩ {x : |x| � ε−1/2}), (8)

νε
η(A) = ν(A ∩ {x : |x| > ε−1/2}), (9)
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and two Lévy processes ξε and ηε with the corresponding Fourier transforms:

E eiλξε
t = exp

{
t

∫
R\{0}

[eiλy − 1 − iλy1(|y| � 1)]νε
ξ (dy)

}
, (10)

E eiληε
t = exp

{
t

∫
R\{0}

[eiλy − 1 − iλy1(|y| � 1)]νε
η(dy)

}
. (11)

It is clear that Lt = ξε
t + ηε

t since ν(A) = νε
ξ (A) + νε

η(A), and the processes ξε and ηε are
independent. Let us investigate them in more detail.

First, since νε
ξ (R) = ∞, the process ξε

t makes infinitely many jumps on each time interval.
Its jumps are, however, bounded by the threshold ε−1/2. Thus, ξε

t has finite variance, and more
generally moments of all orders.

In contrast, the Lévy measure of the process ηε is finite, and we note

βε = νε
η(R) =

∫ −ε−1/2

−∞

dy

|y|1+α
+

∫ ∞

ε−1/2

dy

y1+α
= 2

∫ ∞

ε−1/2

dy

y1+α
= 2

α
εα/2. (12)

Hence, ηε is a compound Poisson process with jumps of absolute value larger than ε−1/2. Let τ ε
k

and Wε
k , k � 0, be the jump arrival times and jump sizes under the convention τ ε

0 = Wε
0 = 0.

Then, the inter-arrival times T ε
k = τ ε

k − τ ε
k−1, k � 1, are independent and exponentially

distributed with mean β−1
ε , and the probability distribution function of Wε

k is given by

P
(
Wε

k < u
) = 1

βε

∫ u

−∞
νε

η(dy) = 1

βε

∫ u

−∞
1{|y|>ε−1/2}(y)

dy

|y|1+α
. (13)

Consider now the process Xε given by equation (3). On the inter-arrival intervals[
τ ε
k−1, τ

ε
k

)
, k � 1, it is driven only by the process εξε, and at the time instants τ ε

k it makes a
jump of the size εWε

k . Recall that the jumps of εξε are bounded by
√

ε. Since the variance of
εξε vanishes in the limit of small ε, the random trajectory Xε

t should not deviate much from
the deterministic trajectory X0

t of the underlying dynamical system on the intervals
[
τ ε
k−1, τ

ε
k

)
.

Indeed, in the case of the bounded interval [−b, a] the following estimate holds true:

P

(
sup

t∈[0,T ε
1 )

∣∣Xε
t (x) − X0

t (x)
∣∣ � εγ

)
� exp(ε−r ), ε↓0, (14)

for some positive γ , r, and x ∈ (−b, a). The rigorous proof of this inequality is a tedious task,
so we just sketch the idea in the case when the process Xε is an Ornstein–Uhlenbeck process.
In this case, the potential function satisfies U(x) = Mx2/2, and equations (3) and (4) have a
closed form solution given by

Xε
t (x) = x e−Mt + ε

(
ξε
t − M

∫ t

0
ξε
s− e−M(t−s) ds

)
, (15)

X0
t (x) = x e−Mt . (16)

Consequently, for any t � 0,

sup
s∈[0,t]

∣∣Xε
t (x) − X0

t (x)
∣∣ � 2 sup

s∈[0,t]

∣∣εξε
t

∣∣. (17)

Then, from the independence of ξε and T ε
1 and the reflection principle for symmetric Lévy

processes we obtain
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P

(
sup

t∈[0,T ε
1 )

∣∣Xε
t (x) − X0

t (x)
∣∣ � εγ

)
� P

(
sup

t∈[0,T ε
1 )

∣∣εξε
t

∣∣ � εγ

2

)

� 4
∫ ∞

0
βε e−βεt P

(
εξε

t � εγ

2

)
dt

� max
t∈[0,ε−α/2−δ ]

P
(

εξε
t � εγ

2

)
+ 4

∫ ε−α/2−δ

0
βε e−βεt dt = O(exp(ε−r )) (18)

for some δ > 0, where the exponential estimate for the probability in the last line follows from
Chebyshev’s inequality. For details, see [10, 11].

Inequality (14) means that on the inter-arrival periods, the random trajectory Xε
t follows

the deterministic trajectory X0
t with probability close to 1. Because of the properties of

the potential, for any starting point x, X0
t (x) converges to 0 as t → ∞. Let us consider a

εγ -neighbourhood of the origin and estimate the relaxation time T (x, ε) that X0
t (x) needs to

reach it, starting from x ∈ (−b, a). Solving equation (4) results in

T (x, ε) � max

{
−

∫ −εγ

−∞

dy

U ′(y)
,

∫ a

εγ

dy

U ′(y)

}
� R|ln ε|, ε↓0, (19)

for some positive R. Here we have used that |U ′| increases faster than linearly at −∞, so the
integrals in the previous formula converge. It is of crucial importance for our argument to note
that the relaxation time has logarithmic order in ε and compares to the average time between
jumps through

T (x, ε) � ET ε
1 = 1

βε

= α

2εα/2
, ε ↓ 0. (20)

This implies that with probability close to 1, before the arrival time τ ε
k the process Xε has

relaxed to a small 2εγ -neighbourhood of 0.
Now we can describe the typical behaviour of the sample paths of Xε(x). Indeed, starting

at x ∈ (−b, a), Xε(x) follows the deterministic trajectory X0(x) until the first arrival time τ ε
1 .

Because of the inequality (20), just before the big jump the process is located near the origin,
i.e. Xε

τε
1 −(x) ≈ 0. Consequently, its new location is also known and given by

Xε
τε

1
= Xε

τε
1 − + εWε

1 ≈ εWε
1 . (21)

From now on, Xε follows the deterministic trajectory starting at Xε
τε

1
, and at the next jump

time τ ε
2 it jumps to the neighbourhood of εWε

2 , etc (see figure 1).
Thus, we can summarize the pathwise behaviour of Xε as follows: Xε

0(x) = x, with high
probability Xε

τε
k
(x) ≈ εWε

k , k � 1, and on the intervals
[
τ ε
k−1, τ

ε
k

)
, Xε follows the deterministic

trajectory X0.

4. Kramers’ law for Lévy flights

We next discuss the law and the mean value of the first exit time form the interval I = [−b, a]

σx(ε) = inf
{
t > 0 : Xε

t (x) /∈ I
}
, x ∈ (−b, a), ε > 0. (22)

This can easily be achieved now with the results of the previous section.
Indeed, we note that Xε can roughly leave [−b, a] only at one of the time instants τ ε

k

while jumping by the distance εWε
k from a small neighbourhood of 0.

The probability of jumping out of the interval [−b, a] can be calculated explicitly from
(13), to yield the formula

P
(
εWε

1 /∈ [−b, a]
) = 1

βε

(∫ −b/ε

−∞

dy

|y|1+α
+

∫ ∞

a/ε

dy

y1+α

)
= εα

αβε

[
1

aα
+

1

bα

]
. (23)
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Xε
σ(ε)(x)

εW ε
3

εW ε
2

εW ε
1

x

τε1 τε2 τε3 = σx(ε)

t

Xε
t (x)

a

−b

0

Figure 1. Predominant behaviour of Lévy flights in an external ‘parabolic’ potential.

We can therefore calculate the mean value of σ(ε) using the previous formula, the
independence of jump sizes and the fact that τ ε

k = T ε
1 + · · · + T ε

k . We obtain

Exσ (ε) ≈
∞∑

k=1

Eτ ε
k · Px

(
σ(ε) = τ ε

k

)

≈
∞∑

k=1

k · ET ε
1 · P

(
εWε

1 ∈ I, . . . , εWε
k−1 ∈ I, εWε

k /∈ I
)

= βεP
(
εWε

1 /∈ I
) ∞∑

k=1

k
(
1 − P

(
εWε

1 /∈ I
))k−1

= βε

P
(
εWε

1 /∈ I
) = α

εα

[
1

aα
+

1

bα

]−1

. (24)

Similar arguments allow us to estimate the law of the first exit time. Indeed, for all
k � 1, τ ε

k has a Gamma(βε, k) law with density at time t given by βε e−βεt [(βεt)
k−1]/[(k−1)!].

Hence, we may write for u � 0

Px(σ (ε) > u) ≈
∞∑

k=1

P
(
τ ε
k > u

) · Px

(
σ(ε) = τ ε

k

)

≈
∞∑

k=1

P
(
τ ε
k > u

) · P
(
εWε

1 ∈ I, . . . , εWε
k−1 ∈ I, εWε

k /∈ I
)

=
∞∑

k=1

∫ ∞

u

βε e−βεt
(βεt)

k−1

(k − 1)!
dt · (

1 − P
(
εWε

1 /∈ I
))k−1 · P

(
εWε

1 /∈ I
)

= βεP
(
εWε

1 /∈ I
) ∫ ∞

u

e−βεt

∞∑
k=1

(βεt)
k−1

(
1 − P

(
εWε

1 /∈ I
))k−1

(k − 1)!
dt

= βεP
(
εWε

1 /∈ I
) ∫ ∞

u

e−βεt eβεt (1−P(εWε
1 /∈I )) dt

= exp
(−uβεP

(
εWε

1 /∈ I
)) = exp

(
−u

εα

α

[
1

aα
+

1

bα

])
. (25)
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This can be paraphrased by saying that in the limit of small ε, the exit time σx(ε) is exponentially
distributed with mean described by (24).

Ditlevsen [19] determined the rate of the mean value of σx(ε) as a function of ε using
some discrete time approximation of equation (3) and analysing the Fokker–Planck equation.

The exit problem from the potential well was also studied in [20] for LFs with α ∈ [1, 2).
The analytically derived asymptotic results in the Cauchy case α = 1 are in agreement with
our (24) whereas numerical estimates for α ∈ (1, 2) do not seem to be very conclusive yet.

It is instructive to compare the results just obtained with their well-known counterparts
for diffusions driven by Brownian motions of small intensity ε. Together with (3) consider the
diffusion X̂ε which solves the stochastic differential equation

X̂ε
t = x −

∫ t

0
U ′(X̂ε

s

)
ds + εWt, (26)

where W is a standard one-dimensional Brownian motion, and U is the same potential as in
(3). For the diffusion X̂ε we define the first exit time from the interval I by

σ̂x(ε) = inf
{
t � 0 : X̂ε

t (x) /∈ [−b, a]
}
, x ∈ (−b, a). (27)

Then the following statements hold for σ̂ (ε) in the limit of small ε.

1. The first exit time σ̂x(ε) is exponentially large in ε−2. To state the law more precisely,
assume that U(a) < U(−b). Then, for any δ > 0, x ∈ (−b, a), according to [3]

Px

(
e(2U(a)−δ)/ε2

< σ̂(ε) < e(2U(a)+δ)/ε2) → 1 as ε → 0. (28)

Moreover, ε2 ln Ex σ̂ (ε) → 2U(a).
The mean value of the first exit time in the small noise limit (Kramers’ law) can be
calculated more explicitly by (see [2, 21])

Exσ̂ (ε) ≈ ε
√

π

U ′(a)
√

U ′′(0)
e2U(a)/ε2

. (29)

For its understanding note that the boundary points a and −b are non-characteristic, i.e.
U ′(a), U ′(−b) 
= 0. This leads to a somewhat different formulation of Kramers’ law
compared with the formula in the original paper [2].

2. The normalized first exit time is exponentially distributed [22–24]: for u � 0 we have

Px

(
σ̂ (ε)

Exσ̂ (ε)
> u

)
→ e−u as ε → 0, (30)

uniformly in x on compact subsets of (−b, a).

As we see, σ̂ (ε) and σ(ε) have essentially different orders of growth as ε → 0. The
exit times of the processes driven by α-stable noise are much shorter because of the presence
of large jumps which occur with probability polynomially small in ε. To leave the interval,
the diffusion X̂ε has to overcome a potential barrier of height either U(−b) or U(a). So in
the case considered here, X̂ε

σ̂ (ε) = a with an overwhelming probability. The diffusion has to
‘climb’ in the potential landscape. This also explains why the pre-factor in (29) depends on
geometric properties of U such as the slope at the exit point and the curvature at the local
minimum, the place where the diffusion spends most of its time before exiting.

The process Xε in contrast uses the possibility of exiting the interval at one large jump.
This is the reason why the asymptotic exit time depends mainly on the distance between the
stable point 0 and the interval’s boundaries. The potential’s geometry does not play a big role
for the low order approximations of the exit time σ(ε). Although it is important for the proof,
it does not appear in the pre-factors of the mean exit time in (24) and remains hidden in the
error terms.
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5. Meta-stable behaviour

Assume now that the potential U has two wells with minima located in −p and q, and a saddle
point at the origin, −p < 0 < q. We continue to assume that all extreme points are non-
degenerate, and U increases at infinity of the order |x|2+c for some positive c. For example,
one can consider a standard quartic potential U(x) = (x4/4) + (p − q)(x3/3) − pq(x2/2).

It is clear that for small values of ε the process Xε spends most of its time in small
neighbourhoods of the potential’s local minima jumping between the wells at random times.
Since we have only two wells, the transition time is the same time as the exit time from one
of the wells.

In the previous section, we have studied exit times for a well with non-characteristic
boundaries. The situation in the present section is a bit more complicated. This is due to
the presence of the saddle point at which the force vanishes, and a simple comparison of the
random dynamics of Xε and X0 as before is not possible.

However, we can reduce the exit problem to the one solved before by excluding some
small, say εγ -neighbourhood of the saddle point, and considering the exit from the domains
(−∞,−εγ ] and [εγ ,∞). The dynamics in these domains is not essentially different from the
typical behaviour described in section 3. We only need to give an estimate for the relaxation
time T (x, ε) which takes into account the singularity at the origin. Thus, for instance, for the
left well we obtain

T (x, ε) � max

{
−

∫ −p−εγ

−∞

dy

U ′(y)
,

∫ −εγ

−p+εγ

dy

U ′(y)

}
� R1|ln ε|, ε↓0. (31)

The relaxation time has again just a logarithmic order because of the non-degeneracy of the
potential’s extreme points.

We further note that the probabilities of jumping out of the domain (−∞,−εγ ] and into
the domain [εγ ,∞) are equal up to the terms of higher order of the expression

P
(
εWε

1 > p − εγ
) ≈ P

(
εWε

1 > p + εγ
) ≈ εα/2

2pα
, (32)

whereas the probability of jumping into the εγ -neighbourhood of the saddle point is negligible
and given by

P
(
εWε

1 + p ∈ [−εγ , εγ ]
) ∝ εα/2+γ � εα/2. (33)

(This explains why we should work with ε-dependent neighbourhoods.)
Finally, we conclude that the transition times from the left to the right well respectively

vice versa have mean values

Eτpq(ε) ≈ αpα

εα
and Eτqp(ε) ≈ αqα

εα
, ε↓0, (34)

and are asymptotically exponentially distributed. Thus, the main features of the process Xε

in the small noise limit are retained by a Markov jump process, and on the time scale ε−α we
obtain the following convergence in the sense of finite dimensional distributions:

Xε
t/εα (x) → Yt , t > 0, ε↓0, (35)

where Y is a Markov process on the state space {−p, q} with the following matrix as
infinitesimal generator:

1

α

(
−p−α p−α

q−α −q−α

)
and Y0 =

{−p, if x < 0,

q, if x > 0.
(36)
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Again, let us compare the result obtained with its Gaussian counterpart. Here we refer to
[25], where this problem was first studied.

Let us again consider a Gaussian diffusion X̂ε which solves equation (26). Since it is
well known that in the Gaussian case the height of the potential barriers plays a crucial role,
we assume that U(0) = 0, U(−p) = −H,U(q) = −h and 0 < h < H , i.e. the left well
is deeper. Then, because of Kramers’ law, the system has two different intrinsic time scales,
given by the mean exit times from the wells (compare with (34)):

Eτ̂pq(ε) ≈ 2π√
U ′′(−p)|U ′′(0)| e2H/ε2

and Eτ̂qp(ε) ≈ 2π√
U ′′(−q)|U ′′(0)| e2h/ε2

, ε↓0.

(37)

Exponentially different Kramers’ times lead to the following meta-stable behaviour of X̂ε:

X̂ε
tλε (x) → Ŷ t , ε↓0, (38)

in the sense of finite dimensional distributions, where λε is such that λε/Eτ̂qp(ε) → 1, and Ŷ

is a Markov process on {−p, q} with the infinitesimal matrix(
0 0
1 −1

)
and Ŷ 0 =

{−p, if x < 0,

q, if x > 0.
(39)

As we see, the main difference between LFs and Gaussian dynamics consists not only
in different intrinsic time scales—polynomial versus exponential—but also in qualitatively
different limiting behaviour. In the heavy-tail case, the states of the limiting process are
recurrent, whereas in the Gaussian case, the minimum of the deepest well is absorbing.

6. Conclusion

We determine the probability law and the mean value of escape times from a potential well
for all values of the stability index α ∈ (0, 2) in the limit of small noise. Escape times have
exponential distribution, and their averages increase as ε−α with pre-factors depending on α

and the distance between the potential’s local extrema.
In the case of a double-well potential, we determine a new time scale on which the Lévy-

driven diffusion converges to a two-state Markov process with some non-trivial generator.
Our methods are purely probabilistic. They also work for all Lévy noises with heavy

(regularly varying) tails of any index.
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